CATALOGUE CONTENT

1. METAL COATED FIBERS

ALUMINUM	I COATED	FIBERS

> SINGLE MODE	2
> MULTIMODE STEP INDEX (LOW OH)	3
> MULTIMODE STEP INDEX (HIGH OH)	4

COPPER COATED FIBERS

> SINGLE MODE	5
SINGLE MODE (F-doped)	5
> MULTIMODE GRADED INDEX	6
> MULTI MODE STEP INDEX (LOW OH)	7
> MULTIMODE STEP INDEX (HIGH OH)	8

SINGLE MODE

SPECIALTY FIBER ALUMINUM COATED FIBERS

ARTICLE OK-9/125AL

Aluminum-coated single mode optical fibers have all the benefits of optical fibers include increased mechanical strength and greater fatigue resistance compared to non-hermetic and polymer-clad fibers (PCS). Their transmittance covers a spectral range of 1500 to 1600 nm, and also remains stable in corrosive chemicals that normally react to silica glass.

FEATURES:

- Excellent mechanical strength and flexibility compared to polymer coated fibers.
- ✤ The temperature range is from -196°C to +400°C.
- The metal coating can be soldered and will not outgas.

FIBER SPECIFICATIONS	0K-9/125AL
Fiber type	Single mode
Coating material	Aluminium
Core diameter, µm	9.1 ± 0,5
Mode field diameter (Gauss), µm	10.0 ± 0,5
Clad diameter, µm	125 ± 1
Coating diameter, µm	155 ± 5
Wavelength range, nm	1500 ÷ 1600
Cutoff wavelength, nm	< 1450
Attenuation at 1550nm, dB/km	< 7
Core material	Silica Ge-doped
Clad material	silica
Numerical Aperture (NA)	0.126 ± 0.01
Δn	0.005 ± 0.0005
Short-term bending radius, mm	> 10
Long-term bending radius, mm	> 25
Proof test, kpsi	> 100
Min operating temperature, ^o C	- 196
Max operating temperature, ^o C	400

SPECIALTY FIBER ALUMINUM COATED FIBERS

Aluminum-coated step index multimode optical fibers have all the benefits of silica-silica fibers. Additional significant improvements include increased mechanical strength and greater fatigue resistance compared to non-hermetic and polymer-clad fibers (PCS). Their transmittance covers a spectral range of 400 to 2200 nm, and also remains stable in corrosive chemicals that normally react to silica glass. The temperature range is from -196C to +400C.

FEATURES:

- Greatly enhanced resistance to high power laser radiation.
- Higher core-to-clad ratio and enlarged NA optimized for coupling to high-energy lasers.
- Better fiber cooling due to the heat-conducting metal coating.
- Excellent mechanical strength and flexibility compared to polymer coated fibers.
- The metal coating can be soldered and will not outgas.

LOW OH **STEP INDEX** MULTIMODE SILICA FIBERS

FIBER SPECIFICATIONS	0K- 100/110AL	0K- 150/165AL	0K- 200/220AL	0K- 300/330AL	0K- 400/440AL	0K- 600/660AL	0K- 800/880AL	0K- 1000/1100AL	
Core diameter, µm	100 ± 2	150 ± 3	200 ± 4	300 ± 6	400 ± 8	600 ± 12	800 ± 15	1000 ± 20	
Clad diameter*, µm	110 ± 3	165 ± 4	220 ± 5	330 ± 10	440 ± 12	660 ± 15	880 ± 20	1100 ± 40	
Coating diameter, µm	140 ± 8 (150 ± 8)	210 ± 12	300 ± 15	450 ± 25	565 ± 25	860 ± 30	1110 ± 40	1410 ± 60	
Attenuation at 800/1300nm (see grapf Low OH)	The loss spectrum in the long wavelength region (>1 µm) is higher than that of the material								
Wavelength range, nm (see grapf Low OH)	400 -	÷ 1100	400 ÷	1700		400 -	÷ 2200		
Fiber type				Mul	timode				
Index profile	Step								
Coating material				Alur	minium				
Core material		Pure syntetic silica (low OH)							
Clad material				Dope	ed silica				
Numerical Aperture (NA)		0.22 ± 0.02							
Short-term bending radius		60 times the fiber diameters							
Long-term bending radius	120 times the fiber diameters								
Proof test, kpsi	> 100								
Min operating temperature, °C		-196							
Max operating temperature, °C				+	400				

*The core/clad ratios 1.06/1.1 on the request Other parameters are available on the request

3

SPECIALTY FIBER ALUMINUM COATED FIBERS

HIGH OH STEP INDEX MULTIMODE SILICA FIBERS

Aluminum-coated step index multimode optical fibers have all the benefits of silica-silica fibers. Additional significant improvements include increased mechanical strength and greater fatigue resistance compared to non-hermetic and polymer-clad fibers (PCS). Their transmittance covers a spectral range of 250 to 1200 nm, and also remains stable in corrosive chemicals that normally react to silica glass. The temperature range is from -196C to +400C.

FEATURES:

- Greatly enhanced resistance to high power laser radiation.
- Higher core-to-clad ratio and enlarged NA optimized for coupling to high-energy lasers.
- Better fiber cooling due to the heat-conducting metal coating.
- Excellent mechanical strength and flexibility compared to polymer coated fibers.
- The metal coating can be soldered and will not outgas.

FIBER SPECIFICATIONS	0KM- 100/110AL	0KM- 150/165AL	0KM- 200/220AL	0KM- 300/330AL	0KM- 400/440AL	0KM- 600/660AL	0KM- 800/880AL	0KM- 1000/1100AL	
Core diameter, µm	100 ± 2	150 ± 3	200 ± 4	300 ± 6	400 ± 8	600 ± 12	800 ± 15	1000 ± 20	
Clad diameter*, µm	110 ± 3	165 ± 4	220 ± 5	330 ± 10	440 ± 12	660 ± 15	880 ± 20	1100 ± 40	
Coating diameter, µm	150 ± 8	210 ± 12	300 ± 15	450 ± 25	565 ± 25	860 ± 30	1110 ± 40	1410 ± 60	
Attenuation at 800/1300nm (see grapf High OH)	The loss spe µm)	ectrum in the lo is higher than t	ong wavelength hat of the mate	region (>1 rial	The loss spe	ctrum is close t	to the material l	oss spectrum	
Wavelength range, nm (see grapf High OH)	250 -	÷ 1100			250	÷ 1200			
Fiber type				Mul	timode				
Index profile		Step							
Coating material		Aluminium							
Core material		Pure syntetic silica (High OH)							
Clad material		Doped silica							
Numerical Aperture (NA)		0.22 ± 0.02							
Short-term bending radius		60 times the fiber diameters							
Long-term bending radius	120 times the fiber diameters								
Proof test, kpsi		> 100							
Min operating temperature, °C		-196							
Max operating temperature, °C		400							

*The core/clad ratios 1.06/1.1 on the request

SPECIALTY FIBER COPPER COATED FIBERS

Copper-coated single mode fibers are high strength optical fibers that can be used for both high-temperature and cryogenic applications. Thin additional carbon underlayer is typically added to improve hermetic property of the coating and therefore provide improved mechanical strength. This fiber type is used in sensor systems for biomedicine, oil and gas industry, aircraft applications, high vacuum devices, etc.

FEATURES:

- Solderable coating allows feeding the fibers into high vacuum systems and provides no outgassing.
- Radiation resistant construction.

FIBER SPECIFICATIONS	0K-6/125-C/Cu	0K-9/125-C/Cu	0K-6/125F-C/Cu	0K-9/125F-C/Cu
Core diameter, µm	6.8 ± 0.5	9.1 ± 0.5	6.8 ± 0.5	9.1 ± 0.5
Mode field diameter (Gauss), µm	7.5 ± 0.5	10.0 ± 0.5	7.5 ± 0.5	10.0 ± 0.5
Clad diameter, µm	125 ± 1	125 ± 1	125 ± 1	125 ± 1
Coating diameter, µm	160 ± 5	160 ± 5	160 ± 5	160 ± 5
Fiber type		Singl	le mode	
Coating material		Copper/ (Copper alloy	
Additional inner layer	carbon	carbon	carbon	carbon
Attenuation at 1550nm ¹ , dB/km	< 7	< 7	< 7	< 7
Wavelength range, nm	1500 ÷ 1600	1500 ÷ 1600	1500 ÷ 1600	1500 ÷ 1600
Core material	Silica Ge-doped	Silica Ge-doped	Silica	Silica
Depressive clad	-	-	F-doped	F-doped
Clad material	silica	silica	silica	silica
Cutoff wavelength, nm	< 1450	< 1450	< 1450	< 1450
Numerical Aperture (NA)	0.16 ± 0.01	0.126 ± 0.01	0.009 ± 0.0009	0.005 ± 0.0005
Δn	0.009 ± 0.0005	0.005 ± 0.0005	0.16 ± 0.01	0.126 ± 0.01
Short-term bending radius, mm	> 10	> 10	> 10	> 10
Long-term bending radius, mm	> 25	> 25	> 25	> 25
Proof test, kpsi	> 100	> 100	> 100	> 100
Min operating temperature ² , °C	- 196	- 196	- 196	- 196
Max operating temperature (short time < 60s)², °C	600	600	600	600
Max operating temperature (long time > 60s) ² , °C	< 400	< 400	< 400	< 400
Permissible rate of temperature change in the temperature range, °C/min	5	5	5	5

1- under normal climatic conditions

2- in inert environment

5 FORC-PHOTONICS.COM

SINGLE MODE

GRADED INDEX MULTY MODE SILICA FIBERS

SPECIALTY FIBER COPPER COATED FIBERS

Copper-coated gradient index multy mode optical fibers have increased mechanical strength and greater fatigue resistance compared to non-hermetic and polymer-clad fibers (PCS). Their transmittance covers a spectral range of 1000 to 1600 nm, and also remains stable in corrosive chemicals that normally react to silica glass. The temperature range is from -196°C to +600°C . Hermetically metal-coated optical fibers are the optimum candidate when used in high vacuum and harsh environmental conditions

FEUTURES:

- Better fiber cooling due to the heat-conducting metal coating.
- Excellent mechanical strength and flexibility compared to polymer coated fibers.
- Capability to feed the fibers into a high vacuum: the metal coating can be soldered and will not outgas.

FIBER SPECIFICATIONS	0K-50/125Cu-Gr	0K-50/200Cu-Gr	OK-100/140Cu-Gr					
Core diameter, µm	50 ± 2.5	50 ± 2.5	100 ± 2					
Clad diameter, µm	125 ± 3	200 ± 3	140 ± 2					
Coating diameter, µm	160 ± 10	160 ± 10 250 ± 10 ~						
Cladding offset, %		< 2						
Coating offset, %		< 5						
Attenuation at 1550nm	~ 13	~ 13 ~ 5 ~ 15						
Wavelength range, nm		1000 ÷ 1600						
Coating material		Copper 99,99%						
Core material	Silica Ge-doped							
Clad material		Pure silica						
Additional inner layer	carbon							
Numerical Aperture (NA)		0.2 ± 0.02						
Fiber type	Multimode							
Index profile		Gradient						
Short-term bending radius		60 times the fiber diameters						
Long-term bending radius		120 times the fiber diameters						
Proof test, kpsi	> 100							
Min operating temperature, °C		-196						
Max operating temperature (short time < 60s), °C	600							
Max operating temperature (long time > 60s), °C		< 400						

SPECIALTY FIBER COPPER COATED FIBERS

Copper-coated step index multimode optical fibers have significant improvements include increased mechanical strength and greater fatigue resistance compared to non-hermetic and polymer-clad fibers (PCS). Their transmittance covers a spectral range of 400 to 2200 nm, and also remains stable in corrosive chemicals that normally react to silica glass. The working temperature range is from -196°C to +600°C. Hermetically metalcoated optical fibers are the optimum candidate when used in high vacuum and harsh environmental conditions

FEATURES:

- Greatly enhanced resistance to high power laser radiation.
- Higher core-to-clad ratio and enlarged NA optimized for coupling to high-energy lasers.
- Better fiber cooling due to the heat-conducting metal coating.
- Excellent mechanical strength compared to polymer coated fibers.
- Solderable coating allows feeding the fibers into high vacuum systems and provides no outgassing.

LOW OH STEP INDEX MULTIMODE SILICA FIBERS

FIBER SPECIFICATIONS	0K-50/125Cu	0K- 110/125Cu	0K- 200/220Cu	0K- 300/330Cu	0K- 400/440Cu	0K- 600/660Cu	0K- 800/880Cu	
Core diameter, µm	50 ± 3	113 ± 2	200 ± 2	300 ± 4	400 ± 5	600 ± 8	800 ± 10	
Clad diameter*, µm	125 ± 3	125 ± 2	220 ± 2	330 ± 4	440 ± 5	660 ± 8	880 ± 10	
Coating diameter, µm	160 ± 10	160 ± 10	280 ± 10	420 ± 10	545 ± 10	775 ± 10	980 ± 10	
Attenuation at 800/1300nm (see grapf Low OH)	14	The loss spe region (>1 µ	The loss spectrum in the long wavelength region (>1 µm) is higher than that of the material The loss spectrum is close to the material loss spectrum					
Wavelength range, nm (see grapf Low OH)	1000 ÷ 1600	400 ÷ 1100	400 ÷	- 1700		400 ÷ 2200		
Fiber type				Multimode				
Index profile		Step						
Coating material		Copper 99,99%						
Core material		Pure syntetic silica (low OH)						
Clad material		Doped silica (F-doped)						
Numerical Aperture (NA)	0.16 ± 0.02	0.16 ± 0.02 0.22 ± 0.02						
Short-term bending radius		60 times the fiber diameters						
Long-term bending radius			120 time	s the fiber diame	eters			
Proof test, kpsi		> 100						
Min operating temperature, °C	-196							
Max operating temperature (short time < 60s), °C		600						
Max operating temperature (long time > 60s), °C				< 400				

*The core/clad ratios 1.06/1.1 on the request

SPECIALTY FIBER COPPER COATED FIBERS

Copper-coated step index multimode optical fibers have significant improvements include increased mechanical strength and greater fatigue resistance compared to non-hermetic and polymer-clad fibers (PCS). Their transmittance covers a spectral range of 250 to 1200 nm, and also remains stable in corrosive chemicals that normally react to silica glass. The working temperature range is from -196°C to +600°C. Hermetically metalcoated optical fibers are the optimum candidate when used in high vacuum and harsh environmental conditions

FEATURES:

- Greatly enhanced resistance to high power laser radiation.
- Higher core-to-clad ratio and enlarged NA optimized for coupling to high-energy lasers.
- Better fiber cooling due to the heat-conducting metal coating.
- Excellent mechanical strength compared to polymer coated fibers.
- Solderable coating allows feeding the fibers into high vacuum systems and provides no outgassing.

STEP INDEX MULTIMODE SILICA FIBERS

HIGH OH

FIBER SPECIFICATIONS	0KM- 110/125Cu	0KM- 200/220Cu	0KM- 300/330Cu	0KM- 400/440Cu	0KM- 600/660Cu	0KM- 800/880Cu	
Core diameter, µm	113 ± 2	200 ± 2	300 ± 4	400 ± 5	600 ± 8	800 ± 10	
Clad diameter*, µm	125 ± 2	220 ± 2	330 ± 4	440 ± 5	660 ± 8	880 ± 10	
Coating diameter, µm	160 ± 10	280 ± 10	420 ± 10	545 ± 10	775 ± 10	980 ± 10	
Attenuation at 800/1300nm (see grapf High OH)	The loss spectrum in the long wavelength region (>1 µm) is higher than that of the material						
Wavelength range, nm (see grapf High OH)	250 ÷ 1100			250 ÷ 1200			
Fiber type			Multimo	de			
Index profile	Step						
Coating material	Copper 99,99%						
Core material	Pure syntetic silica (High OH)						
Clad material			Doped silica (F	-doped)			
Numerical Aperture (NA)			0.22 ± 0.	02			
Short-term bending radius		(60 times the fiber	- diameters			
Long-term bending radius	120 times the fiber diameters						
Proof test, kpsi	> 100						
Min operating temperature, °C	-196						
Max operating temperature (short time < 60s), °C	600						
Max operating temperature (long time > 60s), °C			< 400				

*The core/clad ratios 1.06/1.1 on the request Other parameters are available on the request