

Basic AO Modulator Equations

Input Bragg angle Key:

$$\theta_{Bragg} = \frac{\lambda fc}{2.V} \qquad \qquad \lambda = wavelength$$

$$d = 1/e^2 beam dian$$

Separation angle

$$\theta_{sep} = \frac{\lambda fc}{V}$$

Optical rise time

$$\tau_r = 0.65. \frac{a}{V}$$

Modulation bandwidth

$$BW_{mod} = 0.35/\tau_r$$

Optimum RF drive power

$$P_{sat} = \frac{k . \lambda^2 . H}{2 . L . M_2}$$

Diffraction Efficiency

$$DE = \frac{I_{1st}}{I_{0th}}$$

Insertion Loss

$$IL = 1 - \frac{I_{0th}}{I_{Laser}}$$

λ	= wavelength
d	= 1/e ² beam diameter
f	= RF frequency
fc	= centre frequency
∆f	= RF bandwidth
V	= acoustic velocity TeO2 (L): 4.2mm/us TeO2 (S): 0.62- 0.65 mm/us PbMoO4: 3.63mm/us Quartz: 5.7mm/us Ge: 5.5mm/us
L H M2 k	 interaction (electrode) length active aperture (electrode) height AO Figure of Merit transducer conversion loss
I _{1st}	= diffracted laser power
I _{0th}	= zero order (no RF) laser power
I _{Laser}	= input laser power