Potassium Titanyl Phosphate(KTiOPO₄, KTP)

Introduction

Potassium Titanyl Phosphate (KTiOPO₄ or KTP) is widely used in both commercial and military lasers including laboratory and medical systems, range-finders, lidar, optical communication and industrial systems.

CASTECH's KTP is featured by

- Large nonlinear optical coefficient
- Wide angular bandwidth and small walk-off angle
- Broad temperature and spectral bandwidth
- · High electro-optic coefficient and low dielectric constant
- Large figure of merit
- Nonhydroscopic, chemically and mechanically stable

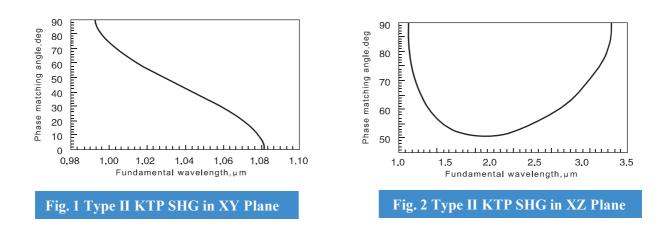
CASTECH offers

- Strict quality control
- Large crystal size up to 20x20x40mm³ and maximum length of 60mm;
- Quick delivery (2 weeks for polished only, 3 weeks for coated)
- Unbeatable price and quantity discount
- Technical support
- · AR-coating, mounting and re-polishing service

Table 1. Chemical and Structural Properties

Crystal Structure	Orthorhombic, space group Pna2 ₁ ,point group mm2
Lattice Parameter	a=6.404Å, b=10.616Å, c=12.814Å, Z=8
Melting Point	About 1172°C
Mohs Hardness	5
Density	3.01 g/cm ³
Thermal Conductivity	13W/m/K
Thermal Expansion Coefficient	$\alpha_x = 11x10^{-6/0}C, \alpha_y = 9x10^{-6/0}C, \alpha_z = 0.6x10^{-6/0}C$

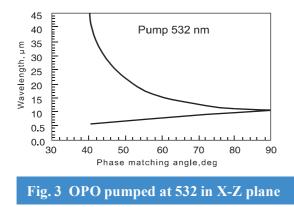
Transparency Range	350-4500nm		
SHG Phase Matchable Range	497-1800nm (Type II)		
Therm-optic Coefficients	$dn_x/dT=1.1X10^{-5}$		
(/ ⁰ C)	$dn_y/dT = 1.3 \times 10^{-5}$		
	dnz/dT=1.6X10 ⁻⁵		
Absorption Coefficients	<0.1%/cm at 1064nm <1%/cm at 532nm		
For Type II SHG of a	Temperature Acceptance: 24°C·cm		
Nd:YAG laser at 1064nm	Spectral Acceptance: 0.56nm·cm		
	Angular Acceptance: 14.2mrad·cm (ϕ); 55.3mrad·cm(θ) Walk-off Angle: 0.55°		
NLO Coefficients	$\mathbf{d}_{\text{eff}}(\text{II}) \approx (\mathbf{d}_{24} - \mathbf{d}_{15})\sin 2\phi \sin 2\theta - (\mathbf{d}_{15}\sin^2\phi + \mathbf{d}_{24}\cos^2\phi)\sin\theta$		
Non-vanished NLO	$d_{31}=6.5 \text{ pm/V}$ $d_{24}=7.6 \text{ pm/V}$		
Susceptibilities	d ₃₂ =5 pm/V d ₁₅ =6.1 pm/V d ₃₃ =13.7 pm/V		
Sellmeier Equations	$n_x^2 = 3.0065 + 0.03901/(\lambda^2 - 0.04251) - 0.01327\lambda^2$		
(λin μm)	$n_y^2 = 3.0333 + 0.04154/(\lambda^2 - 0.04547) - 0.01408\lambda^2$		
	$n_z^2 = 3.0065 + 0.05694/(\lambda^2 - 0.05658) - 0.01682\lambda^2$		
Electro-optic Coefficients:	Low frequency (pm/V) High frequency (pm/V)		
r ₁₃	9.5 8.8		
r ₂₃	15.7 13.8 36.3 35.0		
r ₃₃	36.3 35.0 7.3 6.9		
r ₅₁ r42	9.3 8.8		
Dielectric Constant:	$\varepsilon_{\rm eff} = 13$		


Table 2. Optical and Nonlinear Optical Properties

Applications for SHG and SFG of Nd: lasers

KTP is the most commonly used material for frequency doubling of Nd:YAG and other Nd-doped lasers, particularly when the power density is at a low or medium level. To date, extra- and intra-cavity frequency doubled Nd:lasers using KTP have become a preferred pumping source for visible dye lasers and tunable Ti:Sapphire lasers as well as their amplifiers. They are also useful green sources for many research and industry applications.

- More than 80% conversion efficiency and 700mJ green laser were obtained with a 900mJ injection-seeded Q-switch Nd:YAG lasers by using extra-cavity KTP.
- 8W green laser was generated from a 15W LD pumped Nd:YVO₄ with intra-cavity KTP.
- 200mW green outputs are generated from 1W LD pumped Nd:YVO₄ lasers by using CASTECH's 2x2x5mm³ KTP and 3x3x1mm³ Nd:YVO₄.
- 2-5mw green outputs are generated from 180mw LD pumped Nd:YVO₄ and KTP glued crystals. For more details, please refer to P67.


KTP is also being used for intracavity mixing of 0.81µm diode and 1.064µm Nd:YAG laser to generate blue light and intracavity SHG of Nd:YAG or Nd:YAP lasers at 1.3µm to produce red light.

Applications for OPG, OPA and OPO

As an efficient OPO crystal pumped by a Nd:laser and its second harmonics, KTP plays an important role for parametric sources for tunable outputs from visible (600nm) to mid-IR (4500nm), as shown in Fig. 3 and Fig. 4.

Generally, KTP's OPOs provide stable and continuous pulse outputs (signal and idler) in fs, with 10⁸ Hz repetition rate and a miniwatt average power level. A KTP's OPO that are pumped by a 1064nm Nd:YAG laser has generated as high as above 66% efficiency for degenerately converting to 2120nm.

The novel developed application is the noncritical phase matched (NCPM) KTP's OPO/OPA. As shown in Fig.5, for pumping wavelength range from 0.7μ m to 1μ m, the output can cover from 1.04μ m to 1.45μ m (signal) and from 2.15μ m to 3.2μ m (idler). More than 45% conversion efficiency was obtained with narrow output bandwidth and good beam quality.

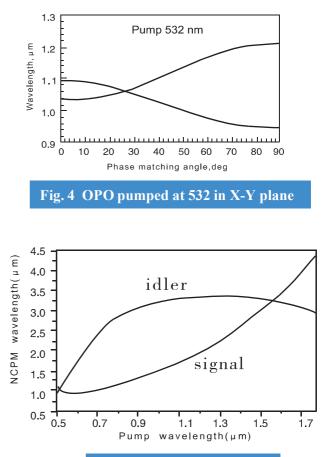


Fig. 5 Type II NCPM OPO

Applications for E-O Devices

In addition to unique NLO features, KTP also has promising E-O and dielectric properties that are comparable to LiNbO₃. These advantaged properties make KTP extremely useful to various E-O devices. Table 1 is a comparison of KTP with other E-O modulator materials commonly used:

Material	torial		Phase			Amplitude		
Wateria	З	N	R(pm/V)	k(10 ⁻⁶ /°C)	$N^7 r^2 / \epsilon (pm/V)^2$	r(pm/V)	k(10 ^{-6/°} C)	$n^{7}r^{2}/\epsilon(pm/V)^{2}$
KTP	15.42	1.80	35.0	31	6130	27.0	11.7	3650
LiNbO ₃	27.9	2.20	8.8	82	7410	20.1	42	3500
KD*P	48.0	1.47	24.0	9	178	24.0	8	178
LiIO ₃	5.9	1.74	6.4	24	335	1.2	15	124

Table 1. Electro-Optic Modulator Materials

From Table 1, clearly, KTP is expected to replace LiNbO₃ crystal in the considerable volume application of E-O modulators, when other merits of KTP are combined into account, such as high damage threshold, wide optical bandwidth (>15GHZ), thermal and mechanical stability, and low loss, etc.

Applications for Optical Waveguides

Based on the ion-exchange process on KTP substrate, low loss optical waveguides developed for KTP have created novel applications in integrated optics. Table 2 gives a comparison of KTP with other optical waveguide materials. Recently, a type II SHG conversion efficiency of 20%/W/cm² was achieved by the balanced phase matching, in which the phase mismatch from one section was balanced against a phase mismatch in the opposite sign from the second. Furthermore, segmented KTP waveguides have been applied to the type I quasi-phase-matchable SHG of a tunable Ti:Sapphire laser in the range of 760-960mm, and directly doubled diode lasers for the 400-430nm outputs.

Table 2. Electro-Optic Waveguide Materials

Materials	r (pm/V)	n	$\epsilon_{\rm eff}(\epsilon_{11}\epsilon_{33})^{1/2}$	$n^{3}r/\epsilon_{eff}(pm/V)$
KTP	35	1.86	13	17.3
LiNbO ₃	29	2.20	37	8.3
KNbO ₃	25	2.17	30	9.2
BNN	56	2.22	86	7.1
BN	56-1340	2.22	119-3400	5.1-0.14
GaAs	1.2	3.6	14	4.0
BaTiO ₃	28	2.36	373	1.0

AR-coatings

CASTECH provides the following AR-coatings:

Dual Band AR-coating (DBAR) of KTP for SHG of 1064nm. low reflectance (R<0.2% at 1064nm and R<0.5% at 532nm); high damage threshold (>300MW/cm2 at both wavelengths); long durability.

- Broad Band AR-coating (BBAR) of KTP for OPO applications.
- High reflectivity coating: HR1064nm&HT532nm, R>99.8%@1064nm, T>90%@532nm.
- Other coatings are available upon request.

CASTECH's Warranty on KTP Specifications

• Dimension tolerance: (W±0.1mm)x(H±0.1mm)x(L+0.5/-0.1mm) (L≥2.5mm)

 $(W\pm 0.1mm)x(H\pm 0.1mm)x(L+0.1/-0.1mm)$ (L<2.5mm)

- Clear aperture: central 90% of the diameter
- No visible scattering paths or centers when inspected by a 50mW green laser
- Flatness: less than $\lambda/8$ @ 633nm
- Transmitting wavefront distortion: less than $\lambda/8$ @ 633nm
- Chamfer: ≤0.2mm x 45°
- Chip: ≤0.1mm
- Scratch/Dig code: better than 10/ 5 to MIL-PRF-13830B
- Parallelism: better than 20 arc seconds
- Perpendicularity: <5 arc minutes
- Angle tolerance: $\leq 0.25^{\circ}$
- Damage threshold[GW/cm²]: >0.5 for 1064nm, TEM00, 10ns, 10HZ (AR-coated)
 - >0.3 for 532nm, TEM00, 10ns, 10HZ (AR-coated)
- Quality Warranty Period: one year under proper use.