Lithium Niobate Crystal (LiNbO_{3})

Introduction

LiNbO_{3} Crystal is widely used as frequency doublers for wavelength $>1 \mu \mathrm{~m}$ and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices. Additionally due to its large Electro-Optic(E-O) and Acousto-Optic(A-O) coefficients, LiNbO_{3} crystal is the most commonly used material for Pockel Cells, Q-switches and phase modulators, waveguide substrate, and surface acoustic wave(SAW) wafers, etc. CASTECH can provide LiNbO_{3} crystals with high quality and large size for all these applications.

$$
\text { Structural and Physical Properties of } \mathrm{LiNbO}_{3}
$$

Crystal Structure:	Trigonal, Space group R3c, Point group 3m
Cell Parameters:	$\mathrm{a}=5.148 \AA, \mathrm{c}=13.863 \AA$
Melting Point:	$1253^{\circ} \mathrm{C}$
Curie Temperature:	$1140^{\circ} \mathrm{C}$
Mohs Hardness:	5
Density:	$4.64 \mathrm{~g} / \mathrm{cm}^{3}$
Elastic Stiffness Coefficients	$\mathrm{C}^{\mathrm{E}}{ }_{11}=2.33\left(\times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$ $\mathrm{C}^{\mathrm{E}}{ }_{33}=2.77\left(\times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$

Optical and Electro-optical Properties of LiNbO_{3}

Transparency Range:	$420-5200 \mathrm{~nm}$
Optical Homogeneity:	$\sim 5 \times 10^{-5} / \mathrm{cm}$
Refractive Indices:	$\begin{aligned} & \mathrm{n}_{\mathrm{e}}=2.146, \mathrm{n}_{\mathrm{o}}=2.220 @ 1300 \mathrm{~nm} \\ & \mathrm{n}_{\mathrm{e}}=2.156, \mathrm{n}_{\mathrm{o}}=2.232 @ 1064 \mathrm{~nm} \\ & \mathrm{n}_{\mathrm{e}}=2.203, \mathrm{n}_{\mathrm{o}}=2.286 @ 632.8 \mathrm{~nm} \\ & \hline \end{aligned}$
NLO Coefficients:	$\begin{aligned} & \mathrm{d}_{33}=86 \mathrm{xd}_{36}(\mathrm{KDP}) \\ & \mathrm{d}_{31}=11.6 \times \mathrm{d}_{36}(\mathrm{KDP}) \\ & \mathrm{d}_{22}=5.6 \times \mathrm{d}_{36}(\mathrm{KDP}) \\ & \hline \end{aligned}$
Effective NLO Coefficients:	$\begin{aligned} & \mathrm{d}_{\text {eff }}(\mathrm{I})=\mathrm{d}_{31} \sin \theta-\mathrm{d}_{22} \operatorname{cossin} 3 \phi \\ & \mathrm{~d}_{\mathrm{eff}}(\mathrm{II})=\mathrm{d}_{22} \cos ^{2} \theta \cos 3 \phi \end{aligned}$
Electro-Optic Coefficients	$\begin{aligned} & \gamma_{33}^{\mathrm{T}}=32 \mathrm{pm} / \mathrm{V}, \gamma^{\mathrm{S}}{ }_{33}=31 \mathrm{pm} / \mathrm{V}, \\ & \gamma^{\mathrm{T}}=10 \mathrm{pm} / \mathrm{V}, \gamma^{\mathrm{S}} 31=8.6 \mathrm{pm} / \mathrm{V}, \\ & \gamma^{\mathrm{T}}=62.8 \mathrm{pm} / \mathrm{V}, \gamma_{22}^{\mathrm{S}}=3.4 \mathrm{pm} / \mathrm{V}, \end{aligned}$
Half-Wave Voltage, DC Electrical field // z, light $\perp \mathrm{z}$: Electrical field // x or y, light // z:	$\begin{aligned} & 3.03 \mathrm{KV} \\ & \text { 4.02 KV } \\ & \hline \end{aligned}$
Damage Threshold	$100 \mathrm{MW} / \mathrm{cm}^{2}(10 \mathrm{~ns}, 1064 \mathrm{~nm})$

Thermal and Electrical Properties of LiNbO_{3}

Melting Point:	$1250^{\circ} \mathrm{C}$
Curie Temperature:	$1140^{\circ} \mathrm{C}$
Thermal Conductivity:	$38 \mathrm{~W} / \mathrm{m} / \mathrm{K} @ 25^{\circ} \mathrm{C}$
Thermal Expansion Coefficients $\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right):$	$/ / \mathrm{a}, 2.0 \times 10^{-6} / \mathrm{K}$ $1 / \mathrm{c}, 2.2 \times 10^{-6} / \mathrm{K}$
Resistivity:	$2 \times 10^{-6} \Omega \cdot \mathrm{~cm} @ 200^{\circ} \mathrm{C}$
Dielectric Constants:	$\varepsilon^{\mathrm{S}}{ }_{11} / \varepsilon_{0}=43 \quad \varepsilon^{\mathrm{S}} \quad \varepsilon^{\mathrm{T}}{ }_{11} / \varepsilon_{0}=78$
	$\mathrm{D}_{23}=2.04\left(\times 1 \varepsilon_{0}=28 \quad \varepsilon^{\mathrm{T}}{ }_{33} / \varepsilon_{0}=32\right.$
Piezoelectric Strain Constant:	$\mathrm{D}_{33}=19.22\left(\times 10^{-11} \mathrm{C} / \mathrm{N}\right)$

The Sellmeier equations (λ in $\mu \mathrm{m}$) :

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{o}}^{2}=4.9048+0.11768 /\left(\lambda^{2}-0.04750\right)-0.027169 \lambda^{2} \\
& \mathrm{n}_{\mathrm{e}}^{2}=4.5820+0.099169 /\left(\lambda^{2}-0.04443\right)-0.02195 \lambda^{2}
\end{aligned}
$$

Specifications

- Transmitting wavefront distortion: less than $\lambda / 4 @ 633 \mathrm{~nm}$
- Dimension tolerance: $(\mathrm{W} \pm 0.1 \mathrm{~mm}) \times(\mathrm{H} \pm 0.1 \mathrm{~mm}) \times(\mathrm{L} \pm 0.2 \mathrm{~mm})$
- Clear aperture: $>90 \%$ central area
- Flatness: $\lambda / 8 @ 633$ nm
- Scratch/Dig code: 20/10 to MIL-PRF-13830B
- Parallelism: better than 20 arc seconds
- Perpendicularity: 5 arc minutes
- Angle tolerance: $< \pm 0.5^{\circ}$
- AR coating: dual wave band AR coating at $1064 / 532 \mathrm{~nm}$ on both surfaces, with $\mathrm{R}<0.2 \%$ at 1064 nm and $\mathrm{R}<0.5 \%$ at 532 nm per surface.

Other coatings are available upon request.

