Lithium Niobate Crystal (LiNbO₃)

Introduction

LiNbO₃ Crystal is widely used as frequency doublers for wavelength >1 μ m and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices. Additionally due to its large Electro-Optic(E-O) and Acousto-Optic(A-O) coefficients, LiNbO₃ crystal is the most commonly used material for Pockel Cells, Q-switches and phase modulators, waveguide substrate, and surface acoustic wave(SAW) wafers, etc. **CASTECH** can provide LiNbO₃ crystals with high quality and large size for all these applications.

Crystal Structure:	Trigonal, Space group R3c, Point group 3m
Cell Parameters:	a=5.148 Å , c=13.863 Å
Melting Point:	1253°C
Curie Temperature:	1140°C
Mohs Hardness:	5
Density:	4.64 g/cm ³
Elastic Stiffness Coefficients	$C^{E}_{11} = 2.33(\times 10^{11} \text{N/m}^2)$ $C^{E}_{33} = 2.77(\times 10^{11} \text{N/m}^2)$

Structural and Physical Properties of LiNbO₃

Optical and Electro-optical Properties of LiNbO₃

Transparency Range:	420-5200nm
Optical Homogeneity:	$\sim 5 \text{ x } 10^{-5} \text{ /cm}$
Refractive Indices:	$n_{e} = 2.146, n_{o} = 2.220 @ 1300 \text{ nm}$ $n_{e} = 2.156, n_{o} = 2.232 @ 1064 \text{ nm}$ $n_{e} = 2.203, n_{o} = 2.286 @ 632.8 \text{ nm}$
NLO Coefficients:	$d_{33} = 86 \text{ x } d_{36} \text{ (KDP)}$ $d_{31} = 11.6 \text{ x } d_{36} \text{ (KDP)}$ $d_{22} = 5.6 \text{ x } d_{36} \text{ (KDP)}$
Effective NLO Coefficients:	$\begin{array}{l} d_{eff}(I) = d_{31}\sin\theta \cdot d_{22}\cos\sin3\phi \\ d_{eff}(II) = d_{22}\cos^2\theta\cos3\phi \end{array}$
Electro-Optic Coefficients	$\gamma^{T}_{33} = 32 \text{ pm/V}, \gamma^{S}_{33} = 31 \text{ pm/V},$ $\gamma^{T}_{31} = 10 \text{ pm/V}, \gamma^{S}_{31} = 8.6 \text{ pm/V},$ $\gamma^{T}_{22} = 6.8 \text{ pm/V}, \gamma^{S}_{22} = 3.4 \text{ pm/V},$
Half-Wave Voltage, DC Electrical field // z, light ⊥ z: Electrical field // x or y, light // z:	3.03 KV 4.02 KV
Damage Threshold	100 MW/cm ² (10 ns, 1064nm)

Thermal and Electrical Properties of LiNbO₃

Melting Point:	1250°C
Curie Temperature:	1140°C
Thermal Conductivity:	38W/m/K @25°C
Thermal Expansion Coefficients (at 25°C):	//a, 2.0×10 ⁻⁶ /K //c, 2.2×10 ⁻⁶ /K
Resistivity:	2×10 ⁻⁶ Ω·cm @200°C
Dielectric Constants:	$\epsilon_{11}^{S}/\epsilon_{0} = 43$ $\epsilon_{11}^{T}/\epsilon_{0} = 78$ $\epsilon_{33}^{S}/\epsilon_{0} = 28$ $\epsilon_{33}^{T}/\epsilon_{0} = 32$
Piezoelectric Strain Constant:	$\begin{array}{c} D_{22} = 2.04 (\times 10^{-11} \text{C/N}) \\ D_{33} = 19.22 (\times 10^{-11} \text{C/N}) \end{array}$

The Sellmeier equations (λ in μ m) :

$$\begin{split} n_o^2 &= 4.9048 + 0.11768 \, / \, (\lambda^2 - 0.04750) - 0.027169 \lambda^2 \\ n_e^2 &= 4.5820 + 0.099169 \, / \, (\lambda^2 - 0.04443) - 0.02195 \lambda^2 \end{split}$$

Specifications

- Transmitting wavefront distortion: less than $\lambda/4$ @ 633 nm
- Dimension tolerance: $(W \pm 0.1 \text{ mm}) \times (H \pm 0.1 \text{ mm}) \times (L \pm 0.2 \text{ mm})$
- Clear aperture: > 90% central area
- Flatness: $\lambda/8$ @ 633 nm
- Scratch/Dig code: 20/10 to MIL-PRF-13830B
- Parallelism: better than 20 arc seconds
- Perpendicularity: 5 arc minutes
- Angle tolerance: $<\pm 0.5^{\circ}$
- AR coating: dual wave band AR coating at 1064/532 nm on both surfaces, with R < 0.2% at 1064nm and R < 0.5% at 532nm per surface.

Other coatings are available upon request.